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LETTER TO THE EDITOR 

Order propagation in dilute antiferromagnetic Potts models 

J Adlerf, Yuval GefenS, M Schick and Wei-Heng Shih 
Department of Physics, FM-15, University of Washington, Seattle, WA 98195, USA 

Received 1 1  November 1986 

Abstract. The possible orderings in a dilute antiferromagnetic 9 = 3 Potts model on a 
triangular lattice are studied by applying to a hierarchical lattice an approximate renormali- 
sation group scheme which incorporates and preserves all the symmetries of the Potts 
model. This scheme indicates that states with partial order, in which only a subset of the 
symmetries are broken, can exist in systems with these symmetries. They d o  not, however, 
occur in the model with nearest-neighbour pair interactions only. In this model we find 
solely the antiferromagnetically ordered states which occur for bond probabilities in excess 
of p ,  , which is greater than p c ,  the critical probability for bond percolation. 

Conventional wisdom for quenched dilute spin systems is that the zero-temperature 
transition occurs at p , ,  the critical probability for site (or bond) percolation. It has, 
however, become apparent that some randomly diluted systems do not undergo transi- 
tions to an ordered phase until p exceeds p ,  by some non-zero amount. This is the 
case for elastic networks (Feng and Sen 1984, Wang and Hams 1985, Tremblay er a1 
1986), for the quenched bond (Ono 1983) and site (Adler et a1 1986) dilute q = 3  
antiferromagnetic Potts model on the triangular lattice, and for systems with frustrated 
ground states (Shnidman and Mukamel 1984) such as quadrupoles on FCC and 
triangular lattices (Adler et a1 1986). The latter are models of mixtures of ortho- and 
para-hydrogen or deuterium which exhibit long-range orientational order of the quad- 
rupole moments only for concentrations greater than some value x, which is well in 
excess of p ,  (Banke et a1 1985, Kubik et a1 1985, Hams and Meyer 1985). Bounds 
for x, were obtained by Adler et a1 (1986) who also suggested that between x, and p ,  
a partial ordering was possible. However, neither the nature nor the existence of this 
phase was shown by them. 

In this letter we study the properties of a model system on a hierarchical lattice 
which is designed to mimic the properties of a q = 3 antiferromagnetic Potts model on 
the triangular lattice with quenched bond dilution. Within an approximate renormalisa- 
tion group calculation, we find that the zero-temperature transition to one of the six 
equivalent ground states with antiferromagnetic order occurs only for bond concentra- 
tions p 2 p1 where p1 > p , .  Thus, the fact that the lattice is geometrically percolated. 
is insufficient to guarantee the existence of the order. Of greater interest is our result 
that systems possessing the symmetry of the q = 3 antiferromagnetic Potts model can 
exhibit states of partial order, e.g. ones exhibiting no long-range antiferromagnetic 
order but still a long-range helicity order. Such states have, thus far, been neither 
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considered nor sought. Although they do not occur in the model with nearest-neighbour 
interactions only, we believe that they can be brought about by the dilution of models 
with additional interactions. 

With all sites (and bonds) occupied, the q = 3 antiferromagnetic Potts model on 
the triangular lattice has six degenerate ground states of the form shown in figure 1 
(Schick and Griffiths 1977). The states of the Potts spins are labelled A, B and C and 
the three sublattices of the tripartite lattice by a, p and y. Note that a helicity, or 
handedness, can be assigned to each of the six ground states according to the order 
in which the spin states a, b and c are encountered on, say, the upward-pointing 
triangles (Lee et a1 1984). Ground states 1, 2 and 3 have one helicity and states 4, 5 
and 6 have the opposite. Upon quenched dilution of either occupied sites or bonds, 
finite clusters which are sufficiently connected will continue to maintain the order of 
one particular ground state. However, in those localities where many sites no longer 
have three occupied nearest neighbours, the antiferromagnetic order in one region will 
fail to be propagated to another, even though the sample may be well above the 
geometrical percolation threshold. As shown by Adler et a1 (1986), those connections 
which fail to pass the antiferromagnetic order do pass some information; for example, 
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Figure 1. ( a )  Section of the triangular lattice showing the three sublattices a, p and y. 
( b )  The same section is shown occupied by spins in states A, B or C in the six possible 
antiferromagnetic ground states. 
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even a single isolated bond from one region to a given site eliminates one of the three 
possible spin values from occurring at that site and hence reduces from six to four the 
number of ground states which that site can be a part of. This reduction is information. 
Together, such links connecting one region to  another can pass the antiferromagnetic 
order. Therefore, the determination of the concentration below which such order 
cannot be passed requires a knowledge of the global lattice connectivity, a circumstance 
which makes the determination formidable. 

To circumvent this problem, we consider a model on a hierarchical lattice which 
is designed to mimic the original Potts problem on the triangular lattice. Our choice 
is shown schematically in figure 2. There are regions, or vertices, which can be in one 
of six states. A vertex on one level of the hierarchy is connected by six bonds to a 
vertex on the next level. Each bond is labelled by a vector, vi,  whose components vij 
give the conditional probability that the second vertex would be found in state j given 
that the first vertex were in state i and the two vertices were connected by only this 
bond. It is these probabilities which will undergo renormalisation and it is in the 
specification of their initial values that the original problem, the antiferromagnetic 
Potts model on the triangular lattice with nearest-neighbour pair interactions only, is 
simulated. For example, as noted above, a single bond which connects a region ordered 
in ground state 1 with another site transmits the information that the site can be part 
of a region ordered in any of four possible ground states, state 1 and three others with 
equal probability. Which three others depends on which sublattices the bond connects. 
Upon averaging over the six possibilities, one finds that the probability that the site 
can be part of a region ordered in ground state j is given by the j th  component of the 
vector U: = (i, Q, Q, d ,  a,  a). This, therefore, is the representation in the hierarchical 
model of an average bond in the original Potts problem. Similarly, if a particular bond 
in the Potts problem between an ordered region in state 1 and another site were missing, 
then this site could be part of a region ordered into any one of the six possible ground 
states with equal probability. Therefore, this is represented in the hierarchical model 
by a bond U;' = ( a ,  a ,  a ,  a ,  i ,  a). It follows that the initial condition which represents the 
quenched dilute antiferromagnetic Potts model on the triangular lattice is U', = 
puy+ ( 1  - p ) u ; ' .  The other uij for i # 1 can be found from this as they are not independent, 
being related by the symmetry operations of the original Potts problem (Schick and 
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Figure 2. Hierarchical lattice. In going from one level of the lattice to another, six bonds 
are replaced by (or replace) one bond. 
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Griffiths 1977). These operations reduce from 36 to 6 the number of independent 
elements vij of the matrix U, which has the form 

where 

and 

014 u 1 5  u16 .=( ;;; ;I; ;;). 
The normalisation condition further reduces this number to 5 .  

The recursion relation that represents the transformation from one level of the 
hierarchy to the next is illustrated in figure 3. There are two steps in the renormalisation 
process. In the first, the six bonds Vik which link two regions ordered in states i and 
k are replaced by a single effective bond Pike We treat the probabilities associated 
with each bond as independent so that the components of the normalised effective 
bond are given by 

This is also an approximation. In the second step, we sum out the intermediate region 
to obtain the renormalised components 0;: 

h; 
( U )  l b )  ( c )  

Figure 3. Two-stage renormalisation transformation, shown schematically. It is given 
explicitly by (1) and (2). 
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Equations (1) and (2) constitute the renormalisation scheme. It is an approximate 
scheme because at each level of the transformation we consider an average bond and 
not a distribution of bonds. 

We have found six fixed-point vectors which represent sinks of the flow. The sink 
( 5 ,  a ,  6, ;, 5,;) represents the disordered phase. The sink (1, 0, 0, 0, 0,O) represents the 
antiferromagnetically ordered phase because such a bond propagates, with probability 
unity, the order of the region from which it comes. The other four sinks represent 
different possible states of partial order, i.e. states in which not all of the symmetries 
of the original system are broken. The first of these ( f ,  f ,  f ,  0, 0,O) represents a state 
in which only the helicity symmetry is broken; thus, a site connected to a region ordered 
in state 1 by this bond could belong, with equal probability, to a region ordered in 
any of the three states which have the same helicity as state 1. The three sinks 
( f , O ,  0, f, O,O), (f, O,O, 0, f ,  0), and (f, O,O, O,O, 1) represent states in which only one 
of the sublattices is ordered. There is also a 2-cycle between (0,1,0,0,0,0) and 
(0, 0, 1,0,0,0). As this represents an alternation between two different states as the 
length scale increases (McKay et a1 1982), this probably is an artefact of the hierarchical 
lattice, although we cannot exclude the possibility in more realistic systems of phases 
which correspond to cyclic or chaotic trajectories in the parameter space. We have 
also located nine unstable fixed points which govern separatrixes between some of the 
above sinks. They are given in table 1. 

1 1 1 1 1 1  

Table 1. Fixed-point vectors (other than sinks). They are o f  the form p*of'+(l  -p*)uy 
with of', U: and p* given in the table along with the number of relevant eigenvalues. The 
fourth and fifth entries have, by symmetry, two partners which are not shown explicitly. 

of  
Number of relevant 

P* eigenvalues 

The phase diagram of the original Potts model is obtained by scanning along the 
physical line ul, ( p )  = puy, + (1 - p )  U;',. We find that the system is disordered for all 
p s p ,  = 0.1828, and is antiferromagnetically ordered otherwise. This is to be compared 
with p c ,  the bond percolation threshold of our hierarchical lattice which can be 
determined as follows. Suppose that on this lattice we employ, with probability p ,  the 
bonds U; = (1, 0, 0, 0, 0,O) which pass order and, with probability ( 1  - p ) ,  the bonds 
U: = ( a ,  d ,  i ,  A, 4, a )  which do not. The probability at which the former bonds percolate 
is pc .  Referring to the left-hand part of figure 2, we see that the probability that there 
are no such bonds between the upper region and the middle region is ( 1  - P ) ~ ,  so that 
the probability that there are no such bonds between the upper and lower regions is 
2(1 - P ) ~ -  (1 - p ) I 2 ,  where the second term compensates for a double counting. Thus, 
pc  is determined exactly from (1 - p c )  = 2( 1 -pJ6 - (1 - p C ) l 2 ,  which yields pc  = 0.0327. 
Our approximate recursion relation yields an approximation to pc  which is found by 
scanning the line U,, =pul ,+( l  -p)u;' ,  for the separatrix between ordered and disor- 
dered phases. This yields p :  = 0.0197 and is the value with which the threshold 
p1 = 0.1828, derived from the recursion relation, should be compared. 
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Summarising, we have presented an approximate renormalisation group on a 
hierarchical lattice which yields the result that, upon dilution, the antiferromagnetic 
order is destroyed at a dilution p1 which is greater than p c .  Between p c  and p1 the 
lattice, while geometrically percolated, cannot sustain antiferromagnetic order. We 
have also found that states which exhibit partial order, such as long-range helicity 
order, but no long-range antiferromagnetic order should occur in some models governed 
by Hamiltonians with the same symmetries as that of the q = 3 Potts antiferromagnet 
but with additional interactions. Such models are currently under investigation. 

This research was supported in part by the US National Science Foundation under 
Grants No DMR 83-19301 and DMR 85-09392. 
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